Enzymes that Counteract Nitrosative Stress Promote Fungal Virulence

نویسندگان

  • Marisol de Jesús-Berrı́os
  • Limin Liu
  • Jesse C. Nussbaum
  • Gary M. Cox
  • Jonathan S. Stamler
  • Joseph Heitman
چکیده

Enzymes that protect cells from reactive oxygen species (superoxide dismutase, catalase, peroxidase) have well-established roles in mammalian biology and microbial pathogenesis. Two recently identified enzymes detoxify nitric oxide (NO)-related molecules; flavohemoglobin denitrosylase consumes NO, and S-nitrosoglutathione (GSNO) reductase metabolizes GSNO. Although both enzymes protect microorganisms from nitrosative challenge in vitro, their relevance has not been established in physiological contexts. Here we studied their biological functions in Cryptococcus neoformans, an established human fungal pathogen that replicates in macrophages and whose growth in vitro and in infected animals is controlled by NO bioactivity. We show that both flavohemoglobin denitrosylase and GSNO reductase contribute to C. neoformans pathogenesis. FHB1 and GNO1 mutations abolished NO- and GSNO-consuming activity, respectively. Growth of fhb1 mutant cells was inhibited by nitrosative challenge, whereas that of gno1 mutants was not. fhb1 mutants showed attenuated virulence in a murine model, and virulence was restored in iNOS(-/-) animals. Survival of the fhb1 mutant was also reduced in activated macrophages and restored to wild-type by inhibition of NOS activity. Combining mutations in flavohemoglobin and GSNO reductase, or flavohemoglobin and superoxide dismutase, further attenuated virulence. These studies illustrate that fungal pathogens elaborate enzymatic defenses against nitrosative stress mounted by the host.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Responses of Candida albicans to Phagocytosis and the Extracellular Activities of Neutrophils Are Critical to Counteract Carbohydrate Starvation, Oxidative and Nitrosative Stress

Neutrophils are key players during Candida albicans infection. However, the relative contributions of neutrophil activities to fungal clearance and the relative importance of the fungal responses that counteract these activities remain unclear. We studied the contributions of the intra- and extracellular antifungal activities of human neutrophils using diagnostic Green Fluorescent Protein (GFP)...

متن کامل

Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence.

The ability of the fungal pathogen Cryptococcus neoformans to evade the mammalian innate immune response and cause disease is partially due to its ability to respond to and survive nitrosative stress. In this study, we use proteomic and genomic approaches to elucidate the response of C. neoformans to nitric oxide stress. This nitrosative stress response involves both transcriptional, translatio...

متن کامل

Isocitrate dehydrogenase is important for nitrosative stress resistance in Cryptococcus neoformans, but oxidative stress resistance is not dependent on glucose-6-phosphate dehydrogenase.

The opportunistic intracellular fungal pathogen Cryptococcus neoformans depends on many antioxidant and denitrosylating proteins and pathways for virulence in the immunocompromised host. These include the glutathione and thioredoxin pathways, thiol peroxidase, cytochrome c peroxidase, and flavohemoglobin denitrosylase. All of these ultimately depend on NADPH for either catalytic activity or mai...

متن کامل

Redox Regulation, Rather than Stress-Induced Phosphorylation, of a Hog1 Mitogen-Activated Protein Kinase Modulates Its Nitrosative-Stress-Specific Outputs

In all eukaryotic kingdoms, mitogen-activated protein kinases (MAPKs) play critical roles in cellular responses to environmental cues. These MAPKs are activated by phosphorylation at highly conserved threonine and tyrosine residues in response to specific inputs, leading to their accumulation in the nucleus and the activation of their downstream targets. A specific MAP kinase can regulate diffe...

متن کامل

Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans

The major fungal pathogen of humans, Candida albicans, is exposed to reactive nitrogen and oxygen species following phagocytosis by host immune cells. In response to these toxins, this fungus activates potent anti-stress responses that include scavenging of reactive nitrosative and oxidative species via the glutathione system. Here we examine the differential roles of two glutathione recycling ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2003